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1. INTRODUCTION 

In the year 1985, Miller [1] and Koblitz [2] 
independently proposed elliptic curve cryptography 
(ECC) and it is gaining a wide acceptance as an 
alternative to the conventional cryptosystems like RSA 
[3], DSA [4] and DH [5]. The primary reason for the 
attractiveness of ECC over the conventional systems is 
that it offers equivalent security using far smaller key 
sizes. For example, 160-bits of ECC and 1024-bits of 
RSA/DSA/DH offer the same level of security. These 
advantages are particularly beneficial in applications 
where bandwidth, processing capacity, power 
availability and storage is limited. Such applications 
are smart cards, cellular phones, PDA, sensor 
networking and pagers (refer [6] for more details). 
 

 Elliptic curve based protocols such as Elliptic 
Curve Diffie-Hellman (ECDH), Elliptic Curve Digital 
Signature Algorithm (ECDSA) and Elliptic Curve 
Integrated Encryption Scheme (ECIES) involves scalar 
multiplications. The speed of scalar multiplication 
plays a vital role in deciding the efficiency of the 
whole system. In particular, fast multiplication is more 
crucial in some environments such as e-commerce 
servers where the large number of key agreements or 
signature generations occurs, and handheld devices 
with low computational power. There has been 
extensive research to compute scalar multiplication 
efficiently based on various representations of the 
multiplier [7]. 

 
2. MATHEMATICAL BACKGROUND OF ECC 
An elliptic curve can be described as the set of 
solutions for the equation y2 ≡ x3 + ax + b (mod p) 
where a, b є Ζp such that 4a3 + 27b2 # 0, including the 
point infinity Ο. The efficiency of elliptic curve 
algorithm is determined by various factors like 
selecting finite field (prime / binary), coordinate 
representations (Affine, Projective, Jacobian, 
Chudnovsky Jacobian and Modified Jacobian 
coordinate), elliptic curve arithmetic, scalar 
representation etc. More details about the 
mathematical aspect of ECC are available in [25, 26] 

 

 
The two basic elliptic curve arithmetic operations are 
elliptic curve addition (ECADD) and elliptic curve 
doubling (ECDBL). The formula to compute the same 
is given in the Table-1 with respect to the affine 
coordinate system. Let P = (x1, y1) and Q = (x2, y2). 
Point addition will be made when P # Q, and if P = Q, 
then point doubling operation will be carried out. 
 

Operation Formula (Affine Coordinate System) 
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The result of �addition� (P+Q) or �doubling� 

(2P) of points on the elliptic curve will always be 
another point on the curve. One elliptic curve addition 
operation over E(Fp) requires one inversion, two 
multiplications, one squaring and six addition 
operations. Similarly, doubling requires one inversion, 
two multiplications, two squaring and eight addition 
operations. The number of arithmetic operations is 
varying for each coordinate system. 

 
Let us consider the elliptic curve over Fp 

where a = 1, b = 6, p = 11 with the equation     y2 ≡ x3 
+ x + 6 (mod 11). The set of solutions are E = {(2,4), 
(2,7), (3,5), (3,6), (5,2), (5,9), (7,2), (7,9), (8,3), (8,8), 
(10,2), (10,9), Ο}, including the point infinity O.  

Choose P = (2, 4) and Q = (10, 9) and the 
elliptic curve point addition is performed as follows.
    
� λ��= (9-4)/(10-2) mod 11 = 2 

P+Q =  (2,4) + (10,9) 
x3 = 22 � 2 � 10 =  �8 = 3 
y3 = 2 ( 2-3) � 4 = -2 � 4 = -6 = 5 

P+Q =  (2,4) + (10,9)  = (3, 5) 
  
Select the point P = (8,8) and the doubling 

operation is done as follows  
 λ��=  (3 * 82 +1)/(2 * 8) mod 11 = (6 / 

5) mod 11= (50 / 5) mod 11 = 10 
x3 = 102 � 2 * 8 = 84 mod 11 

= 7 
y3 = 10(8-7) -8 = 10 � 8 = 2  

 2P =  (8,8)+ (8,8) = (7,2) 
 

Note that the result of addition and doubling is 
(3,5) and (7,2), because the elliptic curve points are 
Abelian group. In case of affine coordinate system, 
every ECADD / ECDBL requires an inversion 
operation which is costlier than other operations such 
as addition, subtraction and multiplication. The 
projective coordinate doesn�t requires any inversion; 
instead only one inversion is required at last but it 
takes some extra memory for storing temporary 
values. The other coordinate systems and its properties 

can be had from [14] and they are almost the improved 
version of projective coordinate system.  
3. BINARY METHOD 

Scalar multiplication is the computation of the 
form Q= k P where P and Q are the elliptic curve 
points and k is an integer. This is achieved by repeated 
point addition and doubling  operations. To calculate 
the above, integer k is represented as k=kn-12n-1+kn-22n-2 
+ . . . + k1+k0 where kn-1=1 and  ki є{0,1},  i = 
0,1,2�,n-1. This method is called binary method [8] 
which scan the bits of k either from left-to-right or 
right-to-left. The Algorithm-1 given below illustrate 
the computation of kP using binary method. 

 
Algorithm-1: Binary Method 
Input     : Binary representation of k and point P 
Output  : Q = kP 
Q=P 
For i = n-1 to 0 do 

Q = 2Q      (Doubling) 
If  ki = 1 then 

Q = Q + P  (Addition) 
Return Q 

 
The cost of multiplication depends on the 

length of the binary representation of k and the number 
of 1s in this representation. The number of non-zero 
digits is called the Hamming Weight of scalar. In an 
average, binary method requires (n-1) doublings and 
(n-1)/2 additions. For each bit �1�, we need to perform 
ECDBL and ECADD, if the bit is �0�, we need only 
ECDBL operation. So if we reduce the number of 1s in 
the scalar representation or hamming weight, the speed 
of elliptic curve scalar multiplication will improve.  

 

4. ADDITION-SUBTRACTION METHOD  
In 1951, Booth [9] proposed a new scalar 

representation called signed binary method and later 
Rietweisner [10] proved that every integer could be 
uniquely represented in this format. The property of 
this representation is that, of any two consecutive 
digits, at most one is non-zero. Here the integer k is 

represented as  k = ∑
=

1 - 

0  j
j

2jk
l

, where each kj ∈  {�1, 0, 

1}. Rietweisner�s canonical representation is called 
non-adjacent form (NAF) [11]. NAF of a positive 
integer is at most one bit longer than the binary 
representation of the same. The Algorithm-2 is used 
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for converting an integer k into the signed binary 
representation of the same. 

 

Algorithm-2: Computation of NAF of an integer 
Input     :  Positive integer k  
Output  :  s (NAF representation of k)  
 

c = k ; l = 0 
While (c > 0) 

If (c is odd) 
 s[l] =2 � (c mod 4) 
 c = c � s[l] 

Else 
 s[l] = 0 

EndIf  
c = c/2  ; l = l + 1 

    End While 
Return s 

 

 
The average hamming weight of signed binary 
representation is (n/3) and it has the lower hamming 
weight than the binary representation. For example, 
the binary representation of 2927 is (101101101111)2 
and the hamming weight is 9 and NAF of 2927 is 
(01100-100-1000-1)2 and the hamming weight is only 
5. The  hamming weight of k is reduced from 9 to 5 
which leads to the improvement in the scalar 
multiplication.  

 

One notable property of elliptic curve group is that the 
inverse of a point can be computed virtually free. This 
is the reason why a signed representation of scalar is 
meaningful. The binary method is revised accordingly 
and the new algorithm is called addition-subtraction 
method [12, 13] given below. 
 

Algorithm-3: Addition-Subtraction method 
Input    :  k and P  
Output :  Q = kP 
 
s[ ] =NAF(k)  /* The NAF  of k is stored in s */ 
Q = P 
For j = n�1 to 0 
 Q = 2Q 
 If (sj = 1) 
                      Q = Q + P 
 ElseIf (sj = �1) 
                      Q = Q � P 
 EndIf 
Return Q 

 

This algorithm performs n doublings and n/3 
additions in an average. The disadvantage of the 
addition-subtraction method is that it is necessary to 
complete the recoding and store them before starting 
left-to-right evaluation stage. Hence it requires 
additional n-bit memory for the right-to-left exponent 
recoding.  

 
5. WINDOW METHOD 
When we are allowed to use extra memory, the 
window method further enhances the efficiency of 
scalar multiplication by using table of pre-computed 
points. A window is a combination of consecutive 
columns such that the number of columns is less than 
or equal to w where w is the width. In this method w 
consecutive bit of binary representation is scanned and 
get replaced by pre-computed table value.  Let us 
consider the window method with width w=4, the 
necessary pre-computation is made according to the 
digits set T={1,3,5,7} that is 1�.2w-1-1. During the 
recoding stage, the binary exponent is getting replaced 
as follows: 1|1→0|3, 1|0|1→0|0|5, and 1|1|1→ 0|0|7. 
The conversion from binary to the window can be 
performed left-to-right or right-to-left as well. The 
result may differ syntactically, but there is no change 
in the non-zero density of those representations. The 
window based signed binary representation is called 
wNAF, first described in [15] has minimal hamming 
weight than any other scalar representations. The 
property of wNAF is that  
 

o The most significant non-zero bit is positive  
o Among any w consecutive digits, at most one 

is non-zero  
o Each non-zero digit is odd and less than 2w-1 in 

absolute value  
 
The Algorithm-4 is used to generate wNAF of 

given integer k from least significant bit that is right-
to-left. 

 

Algorithm-4: Generation of wNAF of integer 

Input    : width w, an n-bit integer k 
Output : wNAF of k (skn|skn-1|...|sk0) 

i = 0  
While d ≥ 1 do  

If k is even then  
ski = 0  

Else  
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ski = k mods 2w  
k = k - ski  

        Endif 
              k = k/2; i = i + 1  
       Return (skn, skn-1, ..., sk0) 

 
The average density of non-zero bits is 

asymptotically 1/ (w+1) for n→∞, and the digit set 
equals T= {±1, ±3,...,±(2w-1-1)} which seems to be 
minimal. For example, the binary representation of 
2927 is (101101101111)2 and wNAF representation of 
2927 is (005005005007)2. The the hamming are 9 and 
4 respectively. So the wNAF is an optimal 
representation of the scalar. The Algorithm-5, [15] 
does the necessary pre-computations and then kP is 
computed using window method. 

 
Algorithm-5: Scalar multiplication using window 
method 
Pre-computation Stage: 
Input     :  point P and width w 
Output  :  Pi = iP; i = 1�2w-1 � 1 
 
P1  = P 
X  =  ECDBL(P1) 
For i = 3 to 2w-1 - 1, step 2 do 

Pi   = ECADD(X, Pi-2) 
Return Pi; i = 1 � 2w-1 � 1 

Evaluation Stage: 
Input   :  point P and k (k is an integer) 
    wNAF = skn|skn-1|...|sk0 of d 

   Pi := iP; i = 1� 2w-1 - 1 
Output : dP 
 

X   = O 
for i = n down to 0 do 

X  = ECDBL(X) 
if ki > 0 then 

X  = ECADD(X,  Pki) 
else if ki < 0 then 

X  = ECADD(X, -P|kj |) 
return X 

 
wNAF is computed only from the least 

significant bit, that is right-to-left. So we need to 
compute and store the wNAF representation of the 
multiplier before starting scalar multiplication. The 
drawback of wNAF is that it is not possible to merge 

the exponent recoding and the evaluation stage and it 
seems impossible to compute wNAF left-to-right. 
However, in connection with memory constraint 
devices left-to-right recoding schemes are by far more 
valuable. 
 

6. MUTUAL OPPOSITE FORM (MOF)  
The left-to-right recoding method eliminates the need 
for recoding and storing the multiplier in advance. 
Joye and Yen [16] first proposed the left-to-right 
recoding algorithm in the year 2000. In CRYPTO 
2004, Okeya [17] proposed a new efficient left-to-right 
recoding scheme called mutual opposite form (MOF). 
The property of new singed binary representation is 
that  

o Signs of adjacent non-zero bits (without 
considering 0 bits) are opposite  

o Most non-zero bit and the least non-zero bit 
are 1 and -1, respectively 

o All the positive integers can be represented by 
unique MOF 
 

The following Algorithm-6 is a simple and flexible 
conversion from n-bit binary string k to (n+1)-bit 
MOF. 
 

Algorithm–6: Generation from Binary to MOF 
(Left-to-Right) 
Input     :  n-bit binary string k=kn-1|kn-2|�|k1|k0 
Output  :  MOF of k (mkn|...|mk1|mk0) 

 

mkn = kn-1  
for i = n-1 down to 1 do  

mki = ki-1 - ki  
mk0 = -k0  

Return (mkn, mkn-1, ..., mk1, mk0) 
 
This algorithm converts the binary string to 

MOF from the most significant bit efficiently. MOF 
representation of an integer is highly flexible because, 
the conversion from right-to-left and left-to-right is 
possible. 
 

Applying window method on MOF can further 
minimize the non-zero density of MOF. The wMOF is 
the first window based signed recoding scheme that 
can be performed from the most significant bit. As in 
the case of elliptic curve scalar multiplication a left-to-
right evaluation is the natural choice, wMOF enables 
to merge recoding and evaluation stage. Hence there is 
no need to store the recoded scalar earlier. The 
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Algorithm-7 will make use of the pre-computed table 
to generate wMOF of k from left-to-right. 

 
Algorithm-7 : Left-to-Right Generation from 
Binary to wMOF 
Input    :  
width w, n-bit binary string k=kn-1|kn-2|...|k1|k0 
Output : wMOF of k (skn|skn-1|...|sk0) 
 
k-1 = 0; kn = 0  
i = 0  
while i ≥ w - 1 do  
        if ki = ki-1 then  
             ski = 0; i = i - 1  
         else {The MOF windows begins with a non-
zero digit left-hand}  
             (ski, ski-1, ..., ski-w+1) ← Table w SW(ki-1 - ki, 
ki-2 - ki-1, ..., ki-w - ki-w+1)  
              i = i - w  

  if i ≥ 0 then  
 (ski, ski-1, ..., sk0) ← Tablei+1SW(ki-1 - ki, ki-2 
- ki-1, ..., k0 - k1, - k0)  

return (skn, skn-1, ..., sk0) 
 

The average non-zero density of wMOF is 
also 1/ (w+1) for n → ∞.  Every non-negative integer k 
has a representation as wMOF, which is unique except 
for the number of leading zeros. The Algorithm-8 
merges the recoding and evaluation stage of the scalar 
multiplication. 

 
Algorithm-8: Left-to-Right Scalar multiplication 
using wMOF(On the Fly) 

Input     :  Point P, n-bit binary string k = kn-1| kn-2|... 
|k1|k0   

Output  :  k P 

k-1 =0; k0 = 0 

i=e+1 for the largest e with ke #0 

If ki-2 = 0 then 

 Q = P ; i = i�2; 

Else {ki-2 = 1} 

 Q=ECDBL(P); i=i-2; 

While i ≥1 do 

If ki-1 = ki then 

           Q=ECDBL(Q); i=i-2; 

Else { ki-1 # ki } 

  Q=ECDBL(Q) 

  If (ki , ki-2 ) = (1,1) then 

     Q=ECDBL(Q);  

                              Q=ECADD(Q,-P) 

  Else if (ki,, ki-2 ) = (1,0) then 

Q=ECADD(Q,-P); Q= ECDBL(Q) 

Else if (ki,, ki-2 ) = (0,1) then 

Q=ECADD(Q,P); Q= ECDBL(Q) 

Else if (ki,, ki-2 ) = (0,0) then 

Q= ECDBL(Q); Q=ECADD(Q,P) 

 i=i-2 

 If i=0 then 

Q= ECDBL(Q); Q=ECADD(Q, -k0 P) 

Return Q 

 
The advantage of above algorithm is that it 

reduces the memory requirement since it does not 
store the converted representation of d, instead it is 
used directly in the scalar multiplication. 

 
 

7.  SHAMIR METHOD - PARALLEL 
COMPUTATION 
Some public key cryptographic protocols such as 
the verification of digital signature, self-certified 
signature scheme requires the computation of 
powers of two, three, or more. ECDSA 
verification requires the computation of aP + bQ, 
where a and b are integers and P and Q are elliptic 
curve points. Normally this is done by computing aP 
and  bQ individually and add result finally. Shamir 
proposed a method [18] to compute aP + bQ 
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simultaneously. The signed binary representations of a 
pair of integers are written one below another, the 
number of non-zero columns is defined as the “joint 
weight”. The joint weight of a and b determine the 
speed of the computation. For example, the joint 
weight of 57 and 22 in binary expansion is 6, since 

57=(111001)2 and 22=(010110)2. The signed binary 
representation of 57 is (100-1001)2 and 22 is (10-10-
10)2 and the joint weight is 5. The computation of aP + 
bQ using Shamir method is illustrated in the Table-2. 
  
 

a 1 0 0 -1 0 0 1 

b 0 1 0 -1 0 -1 0 

Double 0 2P 4P+2Q 8P+4Q 14P+6Q 28P+12Q 56P+22Q 

+P P      57P+22Q 

-P    7P+4Q    

+Q  2P+Q      

-Q    7P+3Q  28P+11Q  
 

Table�2: Shamir method to compute aP + bQ. 
 

     
It is clear that the number of additions required is 
depends on the joint weight of a and b and the number 
of point doublings required is one less than the number 
of bits in a or b. Thus minimizing joint weight would 
speedup the computation. This method costs n 
doublings and 2n/3 additions on average. The simple 
pre-computations like P+Q and P-Q would improve 
the speed called fast shamir method given in 
Algorithm-9.  
 

Algorithm-9 : Shamir Method to compute aP + bQ
Input   :   NAF(a), NAF(b) and P,Q 
         where a,b are integers and P,Q are points  
Output :   aP + bQ 

 
P1=P P2=Q 
Q=0             R=P1+P2 S=P1-P2 
for i=n-1 to 0 do  
Q=2Q 

if (ai,bi) # (0,0) 
if (ai,bi) = (1,0) then Q=Q+P1 
elseif (ai,bi) = (-1,0) then Q=Q-P1 
elseif (ai,bi) = (0,1) then Q=Q+P2 
elseif (ai,bi) = (0,-1) then Q=Q-P2 
elseif (ai,bi) = (1,1) then Q=Q+R 
elseif (ai,bi) = (-1,-1) then Q=Q-R 
elseif (ai,bi) = (1,-1) then Q=Q+S 
elseif (ai,bi) = (-1,1) then Q=Q-S 

End 
Return Q 

 
8. JOINT SPARSE FORM (JSF) 
 
Solinas [18] presented a right-to-left method called 
Joint Sparse Form (JSF) for computing the signed 
binary representation of a pair of integers, which 
results in minimal joint weight than shamir�s method. 
The property of JSF is that  

� The average joint weight among all JSF 
representations of two n-bit integers is n/2.  

� Of any three consecutive positions, at least 
one is a double zero 

� Adjacent terms do not have opposite 
signs, that is Xj,Xj+1 # -1 and YjYj+1 # -1 

� If  X , Xj+1 # - 1, then Yj+1 = ±1 and Yj = 0 
� If Yj, Yj+1 # - 1, then Xj+1 = ±1 and Xj = 0  

 
 
The Algorithm-10 is used for generating joint sparse 
form of pair of integers called JSF of integers [18,19].  
 

Algorithm-10:  Computation of Simple Joint 
Sparse Form 
Input     :  x and y are integers 
Output  :  JSF of (x and y) 
 
j=0 
while x # 0 or y # 0 do 

xj =  x mod 2, yj   = y mod 2 
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if xj =1 and yj  = 1 
then 

if (x - xj) / 2 ≡1 (mod 2) then 
xj   =  - xj  

end if 
if (y - yj) / 2 ≡1 (mod 2) then 

yj   =  - yj  
   end if 
else if xj # yj then 

if (x - xj) / 2  ≡  (y - yj) / 2 (mod 2) 
then 

xj = - xj, yj  =  - yj 
end if 

end if  
 x  =  (x - xj) / 2, y =  (y - yj) / 2 
  j =  j + 1 
End while 

 
 The output of above algorithm can be used in 
fast shamir method,Algorithm-9 to compute aP+bQ 
and now it costs l doublings and w additions, where l 
is the length and w is the hamming weight. 
 
9. DIRECT DOUBLING 
Among the various elliptic curve arithmetic 
operations, point doubling is quite costlier than point 
addition in the scalar multiplication over affine 
coordinate system. Sakai and Sakurai [20] proposed a 
scalar multiplication algorithm using direct 
computation of several doublings (which computes 
2kP directly from P) without computing the 
intermediate points 2P, 22P, 23P�2k-1P. The concept 
of direct computation of 2kP was first suggested by 
Guajardo and Paar[12]. The new doubling formula is 
re-constructed as below. 

A1=x1 
B1=3x1

2 + a 
C1= -y1 
D1=12A1 C1

2
 - B1

2 

x2 =  B1
2 � 8A1 C1

2 / (2C1)2 
y2 = 8C1

4 � B1 D1 / (2C1)3 

 
The computational complexity of this formula 

is (5S + 5M + I) and the existing method has the 
complexity of (6S + 4M + I). The complexity of the 
direct computation versus separate doubling is given in 
Table-3. 

Calcu
lation Method Complexity Break-Even 

Point S M I 

4P 

Direct 
Doubling 9 9 1 

8.6 M<I Separate 2 
doubling 4 4 2 

8P 

Direct 
Doubling 13 13 1 

6.3 M<I Separate 3 
doubling 6 6 3 

16P 

Direct 
Doubling 17 17 1 

5.4 M<I Separate 4 
doubling 8 8 4 

2kP 

Direct 
Doubling 4k+1 4k+1 1 3.6k+1.8 

k-1 
Separate k 
doubling 2k 2k k 

Table-3: Computational Complexity comparison 
 
 

From the Table-3, it is found that to compute 
2kP requires at most 4k+1 squaring, 4k+1 
multiplication and only one inversion when compared 
to the separate k doubling which requires 2k squaring, 
2k multiplication and k inversions. As we know that 
the inversion is the costliest arithmetic operation in 
elliptic curve. The direct computation of 2k P using 
affine coordinate system is given in Algorithm-11. 

 
Algorithm-11:  Direct computation of 2k P
Input     :  P1=(x1,y1) 
Output  :  P2

k = 2kP1 = (x2
k,y2

k) 
A1=x1 
B1=3x1

2 + a 
C1= - y1 
 

For i = 2 to k {Compute Ai,Bi and Ci } 
 Ai = B2

i-1 � 8Ai-1C2
i-1 

Bi = 3Ai
2 + 16i-1 a (∏

−

=

1

1

i

j
Cj )4 

Ci = -8 C4
i-1  - B i-1(Ai � 4 Ai-1 C2

i-1) 
 

Dk = 12 AkC2
k � B2

k 

x2
k  = (B2

k  - 8 A k C2
k)/    (2k ∏

=

k

i 1

Ci )2 

y2
k =  (8 C4

k � Bk Dk)/ (2k ∏
=

k

i 1

 Ci )3 
 

The result shows that direct computation with 
160-bit size takes 18.4 ms to compute 2kP, but binary 
method takes 26.8 ms for the same computation. The 
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performance of the direct computation may be further 
improved by new recoding method such as MOF. 

 
10.  DOUBLE BASE NUMBER SYSTEM 
 
In 1996, a new number representation scheme, called 
double-base number system (DBNS) has been 
investigated mainly due to its applicability in digital 
signal processing area [21]. It uses a representation of 
the integers as the sum of mixed powers of two and 
three or of the form 2b3t, where b,t are non-negative 
integers. The DBNS representation is highly redundant 
and any positive integer can be represented as  

 n=∑
=

m

i 1

Si 2bi 3ti , with Si ∈  {-1,1} and bi,ti ≥ 0. 

 
Finding one of the canonic DBNS representations, 
especially for very large integers, seems to be a very 
difficult task and this is obtained by using the 
following Algorithm-12. 

 
Algorithm-12: Greedy algorithm to convert 
integer into DBNS 
 
Input       : A positive integer n 
 
Output    : Sequence of exponents (bn,tn)  
      (leading to one DBNS representation of n) 

 
While   n>0 do 

find z = 2b3t, the largest 2-
integer less than or equal to n 

print (b,t) 
              n=n-z 

 

For example, DBNS representation of 314159 
is 21234-21132+2831+2431-2030. It offers some natural, 
elegant, protection against side-channel attacks [x]. It 
is believed that the huge redundancy of the 
representation can be advantageously exploited in 
order to randomly change the order of the operation, 
such that the same scalar does not give the same trace 
if it is processing several times and it is an additional 
security. 

Scalar multiplication algorithm based on 
double-base number system and double-base chains is 
proposed in [22]. Moreover, further to reduce the 
overall complexity, all the additions were combined 
with doubling, tripling or quadrupling operations. In 

the following Table-4, the cost of the curve operations 
is given (see [23] [24]). 

 
Curve 

Operation Prime field Binary field 

P+Q 1[i]+1[s]+2[m] 1[i]+1[s]+2[m] 
2P 1[i]+2[s]+2[m] 1[i]+1[s]+2[m] 

2P+Q 1[i]+2[s]+9[m] 1[i]+2[s]+9[m] 
3P 1[i]+4[s]+7[m] 1[i]+4[s]+7[m] 

3P+Q 2[i]+4[s]+9[m] 2[i]+4[s]+9[m] 
4P 1[i]+9[s]+9[m] 1[i]+5[s]+8[m] 

4P+Q 2[i]+4[s]+11[m] 2[i]+6[s]+10[m] 
 

Table-4 : Number of inversions[i], squarings [s] and 
multiplications [m], for different curve operations 
 

After obtaining the DBNS representation of a 
number, the Algorithm-13 is used for the computation 
of kP using double-base number system. 
 

Algorithm-13: Double-Base scalar 
multiplication 
Input     :  

point P and Integer k =∑
=

m

i 1

Si 2bi 3ti, with Si ∈  {-

1,1} and bi,ti ≥ 0  
Output  : kP 
 

Z=S1P 
for i=1 to m-1 do 

u=bi - bi+1 
v=ti - ti+1  
if u=0 then 

 Z=3(3v-1Z) + Si+1 P 
else 

 Z=3vZ 
Z=4└(u-1)/2┘Z 
if u≡0 (mod 2) then 

Z=4Z+ Si+1 P 
else 

Z=2Z+ Si+1 P 
Return Z 

 
Though m-1 additions are required to compute kP, the 
above algorithm combines each addition with either a 
doubling (2P+Q), a tripling (3P+Q) or a quadrupling 
(4P+Q).  
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If we assume that k is a random n-bit integer, the 
binary algorithm requires n doublings and n/2 
additions on average. In signed binary method, the 
average density of non-zero digits is reduced to n/3. If 
k is represented in a wNAF form, the average number 
of additions is reduced to n/(w+1). For 160-bit 
integers, and over prime fields, the corresponding 
costs can be estimated to 160[i] + 320[s] + 880[m] 
with the binary method, 106[i] + 320[s] + 691[m] with 
2-NAF method, and 160[i] + 192[s] + 544[m] with 4-
NAF method. The DBNS scalar multiplication 
requires 119[i] + 453[s] + 814[m] operations (See 
more details in [24]). It is found that that scalar 
multiplication algorithm using DBNS gains 20% 
compared to the classical binary method; 17.4% 
compared to 2-NAF method; and 15.25% compared to 
4-NAF method.  
 
11. CONCLUSION 
 Even though elliptic curve based 
cryptographic algorithms were widely accepted and 
used in many applications, still there are many areas 
available to improve. In this paper, the dominant 
operation called scalar multiplication is analyzed in 
many factors. Since from the inception, so many 
algorithms were proposed. Various representation of 
multiplier is presented and how it plays a role in the 
scalar multiplication is also discussed.  
 
o Improve the performance of elliptic curve 

arithmetic operations  
o Finding out efficient coordinate system and 

representations 
o Identifying new scalar representation or reduce 

hamming weight 
o Efficient and flexible scalar multiplication 

algorithm 
o Point compression and embedding and  
o Integrating in an application 
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